Nonlinear Porous Medium Flow with Fractional Potential Pressure

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Porous Medium Flow with Both a Fractional Potential Pressure and Fractional Time Derivative

We study a porous medium equation with right hand side. The operator has nonlocal diffusion effects given by an inverse fractional Laplacian operator. The derivative in time is also fractional of Caputo-type and which takes into account “memory”. The precise model is D t u− div(u(−∆)−σu) = f, 0 < σ < 1/2. We pose the problem over {t ∈ R+, x ∈ Rn} with nonnegative initial data u(0, x) ≥ 0 as wel...

متن کامل

Nonlinear nonlocal diffusion: A fractional porous medium equation

We develop a theory of existence and uniqueness for the following porous medium equation with fractional diffusion,  ∂u ∂t + (−∆)σ/2(|u|m−1u) = 0, x ∈ RN , t > 0, u(x, 0) = f(x), x ∈ RN , with data f ∈ L1(RN ) and exponents 0 < σ < 2, m > m∗ = (N − σ)+/N . An L1-contraction semigroup is constructed. Nonnegative solutions are proved to be continuous and strictly positive for all x ∈ RN , t > 0...

متن کامل

Coupled Generalized Nonlinear Stokes Flow with Flow through a Porous Medium

In this article, we analyze the flow of a fluid through a coupled Stokes-Darcy domain. The fluid in each domain is non-Newtonian, modeled by the generalized nonlinear Stokes equation in the free flow region and the generalized nonlinear Darcy equation in the porous medium. A flow rate is specified along the inflow portion of the free flow boundary. We show existence and uniqueness of a variatio...

متن کامل

Exponential Convergence Towards Stationary States for the 1D Porous Medium Equation with Fractional Pressure

We analyse the asymptotic behaviour of solutions to the one dimensional fractional version of the porous medium equation introduced by Caffarelli and Vázquez [13, 14], where the pressure is obtained as a Riesz potential associated to the density. We take advantage of the displacement convexity of the Riesz potential in one dimension to show a functional inequality involving the entropy, entropy...

متن کامل

Regularity of solutions of the fractional porous medium flow with exponent 1/2

We study the regularity of a porous medium equation with nonlocal diffusion effects given by an inverse fractional Laplacian operator. The precise model is ut = ∇·(u∇(−∆)−1/2u). For definiteness, the problem is posed in {x ∈ RN , t ∈ R} with nonnegative initial data u(x, 0) that are integrable and decay at infinity. Previous papers have established the existence of mass-preserving, nonnegative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Rational Mechanics and Analysis

سال: 2011

ISSN: 0003-9527,1432-0673

DOI: 10.1007/s00205-011-0420-4